Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Electrical conductivity increase of Al-doped ZnO films induced by high-energy-heavy ions

Sugai, Hiroyuki; Matsunami, Noriaki*; Fukuoka, Osamu*; Sataka, Masao; Kato, Teruo; Okayasu, Satoru; Shimura, Tetsuo*; Tazawa, Masato*

Nuclear Instruments and Methods in Physics Research B, 250(1-2), p.291 - 294, 2006/09

 Times Cited Count:15 Percentile:70.41(Instruments & Instrumentation)

We have investigated the effects on electrical properties of Al-doped ZnO (AZO) semiconductor films induced by high-energy heavy ion. The AZO films with c-axis on SiO$$_{2}$$ glass substrate were prepared by a RF-sputter-deposition method at 400 $$^{circ}$$C. Rutherford backscattering spectroscopy shows that the Al/Zn composition and the film thickness are 4 % and 0.3 $$mu$$m. We find that the conductivity monotonically increases from 1.5$$times$$10$$^{2}$$ to 8$$times$$10$$^{2}$$ S/cm with increasing the fluence up to 4$$times$$10$$^{13}$$/cm$$^{2}$$, as already been observed for 100 keV Ne irradiation. The fluence of 100 keV Ne at which the conductivity takes its maximum is 3$$times$$10$$^{16}$$/cm$$^{2}$$ (7 dpa). The dpa of 100 MeV Xe at 4$$times$$10$$^{13}$$/cm$$^{2}$$ is estimated as 0.008. Hence, the conductivity increase by 100 MeV Xe ion is ascribed to the electronic excitation effects.

Journal Articles

Structural changes in anatase TiO$$_{2}$$ thin films irradiated with high-energy heavy ions

Ishikawa, Norito; Yamamoto, Shunya; Chimi, Yasuhiro

Nuclear Instruments and Methods in Physics Research B, 250(1-2), p.250 - 253, 2006/09

 Times Cited Count:42 Percentile:92.72(Instruments & Instrumentation)

Electronic excitation effects on TiO$$_{2}$$ thin films with anatase structure irradiated with 230MeV Xe ions have been studied by means of X-ray diffraction method. X-ray diffraction intensity shows exponential decrease as a function of ion-fluence, indicating that tracks having about 10nm diameter are introduced by the irradiation. Rutile structured TiO$$_{2}$$ was also irradiated and exhibited different damage behavior from that of anatase one. We demonstrated that X-ray diffraction meathod is one of the powerful tool to investigate track structure.

Journal Articles

Irradiation effects with 100 MeV Xe ions on optical properties of Al-doped ZnO films

Fukuoka, Osamu*; Matsunami, Noriaki*; Tazawa, Masato*; Shimura, Tetsuo*; Sataka, Masao; Sugai, Hiroyuki; Okayasu, Satoru

Nuclear Instruments and Methods in Physics Research B, 250(1-2), p.295 - 299, 2006/09

 Times Cited Count:24 Percentile:82.92(Instruments & Instrumentation)

We have investigated the effects on electrical and optical properties of Al-doped ZnO (AZO) semiconductor films induced by high-energy heavy ion. The AZO films with c-axis on SiO$$_{2}$$ glass substrate were prepared by a RF-sputter-deposition method at 400 $$^{circ}$$C. Rutherford backscattering spectroscopy shows that the Al/Zn composition and the film thickness are 4 % and 0.3 $$mu$$m. No appreciable change was observed in optical transparency. We find that the conductivity monotonically increases from 1.5$$times$$10$$^{2}$$ to 8$$times$$10$$^{2}$$ S/cm with increasing the fluence up to 4$$times$$10$$^{13}$$/cm$$^{2}$$, as already been observed for 100 keV Ne irradiation. The fluence of 100 keV Ne at which the conductivity takes its maximum is 3$$times$$10$$^{16}$$/cm$$^{2}$$ (7 dpa). The dpa of 100 MeV Xe at 4$$times$$10$$^{13}$$/cm$$^{2}$$ is estimated as 0.008. Hence, the conductivity increase by 100 MeV Xe ion is ascribed to the electronic excitation effects.

Journal Articles

Effects of swift heavy ion irradiation on magnetic properties of Fe-Rh alloy

Fukuzumi, Masafumi*; Chimi, Yasuhiro; Ishikawa, Norito; Suzuki, Motohiro*; Takagaki, Masafumi*; Mizuki, Junichiro; Ono, Fumihisa*; Neumann, R.*; Iwase, Akihiro*

Nuclear Instruments and Methods in Physics Research B, 245(1), p.161 - 165, 2006/04

 Times Cited Count:17 Percentile:74.53(Instruments & Instrumentation)

We have performed swift heavy ion irradiations in Fe-50at.%Rh alloys at room temperature. Before and after the irradiations, the magnetic properties and the lattice structure are measured using Superconducting QUantum Interference Device (SQUID) and X-Ray Diffractometer (XRD), respectively. We have also performed X-ray Magnetic Circular Dichroism (XMCD) measurement near the Fe K-edge at the synchrotron radiation facility, SPring-8, to examine the irradiation-induced ferromagnetic state near the specimen surface. We have found that the swift heavy ion irradiations induce the ferromagnetic state in Fe-50at.%Rh alloy below the antiferromagnetism-ferromagnetism transition temperature of the unirradiated alloy and the lattice expasion by 0.3%. For the specimens irradiated with swift heavy ions, we observe the XMCD spectra correponding to ferromagnetisim, which depend on the mass of irradiating ions and/or irradiation fluence. Effects of energy loss through electronic excitation and elastic collisions on lattice and magnetic structures of Fe-Rh alloy are discussed.

Journal Articles

Microstructure and atomic disordering of magnesium aluminate spinel irradiated with swift heavy ions

Yamamoto, Tomokazu*; Shimada, Mikio*; Yasuda, Kazuhiro*; Matsumura, Sho*; Chimi, Yasuhiro; Ishikawa, Norito

Nuclear Instruments and Methods in Physics Research B, 245(1), p.235 - 238, 2006/04

 Times Cited Count:13 Percentile:65.77(Instruments & Instrumentation)

We have investigated the microstructure change and atomic disordering process in magnesium aluminate spinel, MgO ${it n}$Al$$_{2}$$O$$_{3}$$ with ${it n}$=1.1 and 2.4, irradiated with swift heavy ions of 200-MeV Xe$$^{14+}$$ and 350-MeV Au$$^{28+}$$. Transmission electron microscopy techniques of bright-field (BF) and high-resolution (HR) imaging, as well as high angular resolution electron channeling X-ray spectroscopy (HARECXS) are employed in quantitative analysis of irradiation-induced structural change. Ion tracks show columnar dark contrast of 4-7 nm in diameter at the incident surface in BF images. Strong strain contrast often arises among plural ion tracks formed closely. Clear lattice fringes are observed in HR images even inside the ion tracks. It indicates that the spinel crystals are not amorphized but partially disordered along the ion tracks. Quantitative HARECXS analysis shows that cation disordering progresses with ion fluence. It is revealed that the disordered regions are extended over 12$$pm$$2 nm in diameter along the ion tracks.

5 (Records 1-5 displayed on this page)
  • 1